Exercise 60

(a) Prove that the equation has at least one real root. (b) Use your graphing device to find the root correct to three decimal places.

$$
\arctan x=1-x
$$

Solution

Bring both terms to the same side.

$$
\arctan x+x-1=0
$$

The function $f(x)=\arctan x+x-1$ is continuous everywhere because it's the sum of two functions known to be continuous everywhere, the inverse tangent function and a polynomial function.

$$
f(x)=0
$$

Find a value of x for which the function is negative, and find a value of x for which the function is positive.

$$
\begin{aligned}
& f(0)=-1 \\
& f(1) \approx 0.785
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [0,1], and $N=0$ lies between $f(0)$ and $f(1)$. By the Intermediate Value Theorem, then, there exists a root within $0<x<1$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(0.5) \approx-0.0364 \\
& f(0.6) \approx 0.140
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [0.5, 0.6], and $N=0$ lies between $f(0.5)$ and $f(0.6)$. By the Intermediate Value Theorem, then, there exists a root within $0.5<x<0.6$. Find other values of x within this interval for which the function is negative and positive.

$$
\begin{aligned}
& f(0.520) \approx-0.000480 \\
& f(0.521) \approx 0.00131
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [$0.520,0.521]$, and $N=0$ lies between $f(0.520)$ and $f(0.521)$. By the Intermediate Value Theorem, then, there exists a root within $0.520<x<0.521$. The function is closer to zero at $x=0.520$ than it is at $x=0.521$. Therefore, to three decimal places, the root is

$$
x \approx 0.520 .
$$

This is reflected in the graph of $f(x)$ versus x.

